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Abstract 

Understanding and predicting patterns of spatial organization across ecological 

communities is central to the field of landscape ecology, and a similar line of inquiry has 

begun to evolve sub-tidally among seascape ecologists. Much of our current understanding of 

the processes driving marine community patterns, particularly in the tropics, has come from 

small-scale, spatially-discrete data that are often not representative of the broader seascape. 

Here we expand the spatial extent of seascape ecology studies and combine spatially-

expansive in situ digital imagery, oceanographic measurements, spatial statistics, and 

predictive modeling to test whether predictable patterns emerge between coral reef benthic 

competitors across scales in response to intra-island gradients in physical drivers. We do this 

around the entire circumference of a remote, uninhabited island in the central Pacific (Jarvis 

Island) that lacks the confounding effects of direct human impacts. We show, for the first 

time, that competing benthic groups demonstrate predictable scaling patterns of organization, 

with positive autocorrelation in the cover of each group at scales < ~1 km. Moreover, we 

show how gradients in subsurface temperature and surface wave power drive spatially-abrupt 

transition points in group dominance, explaining 48 – 84% of the overall variation in benthic 

cover around the island. Along the western coast, we documented ten times more sub-surface 

cooling-hours than any other part of the coastline, with events typically resulting in a drop of 

1 – 4°C over a period of < 5 hr. These high frequency temperature fluctuations are indicative 

of upwelling induced by internal waves and here result in localized nitrogen enrichment (NO2 

+ NO3) that promotes hard coral dominance around 44% of the island’s perimeter. Our 

findings show that, in the absence of confounding direct human impacts, the spatial 

organization of coral reef benthic competitors are predictable and somewhat bounded across 

the seascape by concurrent gradients in physical drivers. 
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Introduction 

Landscape ecology, the study of spatial patterning and its ecological consequences, 

has been key in changing the way we understand and ultimately manage ecosystems (Wiens 

2009). The field often emphasizes the scale-dependence of spatial patterns and has 

fundamentally changed the way ecologists understand their linkages to ecological processes 

at broad geographic extents. For example, landscape-level data from terrestrial ecosystems 

have revealed how plant and forest communities respond to long-term biophysical gradients 

(Thomas et al. 2013) and environmental disturbance (Turner et al. 1997, Turner et al. 1994), 

which can drive spatial heterogeneity in competitive dominance among species (Kellner and 

Asner 2014). Importantly, a spatially-explicit understanding of how landscape patterning 

influences ecological processes (McGarigal and Marks 1995) has greatly aided terrestrial 

land-use management, by informing the preservation of landscape diversity, reducing habitat 

fragmentation, and halting the spread of disturbance (Botequilha Leitão and Ahern 2002). 

With new terrestrial ecological paradigms catalyzed by the analysis of broad spatial 

data, the application of such approaches in the marine realm shows great promise (Pittman et 

al. 2011, Wedding et al. 2011). Seascape ecology is focused on understanding the causes and 

ecological consequences of spatial patterning in the marine environment, often at multiple 

scales (Pittman 2017, Pittman et al. 2011). Seascape ecologists have capitalized on geospatial 

technology such as airborne imagery (Mumby et al. 1998), high-resolution seafloor mapping 

(Hitt et al. 2011, Wedding et al. 2008), and more recently, in situ photogrammetry (Edwards 

et al. 2017) in combination with spatial pattern metrics to expand our understanding of 

marine spatial ecology across scales (Wedding et al. 2011). For example, in the Hawaiian 



Islands the arrangement and composition of seafloor topography, benthic community cover, 

and wave exposure are important predictors of coral reef fish assemblages (Friedlander et al. 

2003, Wedding et al. 2008). The patterns in the distribution and abundance of marine fishes 

are evident across multiple spatial scales, as coral reef ecosystems demonstrate spatial 

heterogeneity at centimeter (Barott et al. 2012), meter (Richardson et al. 2017) and kilometer 

scales (Gove et al. 2015). However, the spatial scales at which biophysical drivers influence 

and predict coral reef benthic community seascapes has not been as well studied, and a multi-

scaled approach is needed to understand the resulting spatial patterns and processes 

(Williams et al. 2015a).  

Inter-island biophysical gradients can set natural bounds on the abundance of key 

benthic competitors on coral reefs (Jouffray et al. 2015, Williams et al. 2015a). Similar 

structuring forces and environmental constraints exist at intra-island scales (Gove et al. 2015, 

Williams et al. 2013). For example, at Palmyra Atoll, an uninhabited coral reef atoll in the 

central Pacific, intra-island gradients in surface wave power lead to predictable spatial 

patterns in benthic communities at scales of 1-10s km (Gove et al. 2015). Where wave power 

peaks, benthic competitors with wave tolerant, low-lying morphologies such as turf algae and 

crustose coralline algae (CCA) dominate. Where wave power is low, larger upright benthic 

competitors such as hard corals and macroalgae that are vulnerable to physical dislodgement 

and damage from water-borne projectiles (Engelen et al. 2005, Madin 2005, Madin et al. 

2014) can gain competitive dominance (Gove et al. 2015). Importantly, by adopting a 

seascape ecology approach, Gove et al. (2015) revealed gradients in wave power to be 

associated with spatially distinct benthic community patterns, such as a quadrant-like 

structure in macroalgal abundance around Palmyra’s coastline. Additionally, hard coral cover 

at Palmyra also becomes more spatially clustered with increasing wave energy (Williams et 

al. 2013), suggesting surface waves play an important role in determining both community 



dominance (Bradbury and Young 1981, Dollar 1982, Page-Albins et al. 2012) and the spatial 

distribution of benthic competitors across the coral reef seascape. Whether similar seascape 

spatial patterns of benthic communities emerge in response to gradients in other physical 

drivers at other coral reef islands and atolls, however, remains untested.  

Here we asked whether predictable seascape patterns emerge between benthic 

competitors in response to intra-island gradients in physical drivers around the circumference 

of a tropical island. Our working hypothesis was inspired by previous work documenting 

strong intra-island gradients in subsurface temperature as a result of localized upwelling at 

Jarvis Island in the central Pacific Ocean (Gove et al. 2006). One common physical method 

by which water can be upwelled from the deep to the shallows around coral reefs atolls, 

islands, and coastal reefs is by internal waves (Gove et al. 2016). Internal waves are the 

subsurface analogue to surface waves, but instead of acting on the sea-surface they exist on 

density surfaces within the water column. Instead of breaking on shorelines and beaches, they 

break at depth when they encounter rough topography (Alford et al. 2015). Internal waves are 

thus capable of forcing deep cold water up through the thermocline and in to the shallows, 

and with them carrying nutrients to oligotrophic shallow reef communities (Leichter et al. 

2012, Wang et al. 2007, Williams et al. 2018). We hypothesized the gradients in subsurface 

temperature invoked by localized upwelling around Jarvis’s coastline would result in 

concurrent gradients in nutrient availability, offering an opportunity to test what effect this 

has on benthic community seascapes.  

Localized increases in nutrient supply are reported to have wide-ranging and 

contrasting effects on the ecology of tropical reefs (D’Angelo and Wiedenmann 2014, 

Norström et al. 2016). For example, enhanced nutrient concentrations in concert with 

diminished herbivorous fish stocks can suppress coral growth and promote fleshy macroalgae 

dominance (McClanahan et al. 2003, Smith et al. 2010). In contrast, increased nutrient supply 



to shallow reefs by physical processes such as internal waves and current-driven upwelling 

can enhance coral growth (Leichter and Salvatore 2006) and promote hard coral persistence 

over time (Wang et al. 2007). These seemingly contrasting scenarios are hypothesized, in 

part, to be driven by variations in the source and type of nutrients in question, for example 

naturally upwelled nutrients versus human-derived agricultural run-off (D’Angelo and 

Wiedenmann 2014). Jarvis Island thus presented an opportunity to test whether localized 

natural nutrient-enrichment results in distinct and predictable patterns of benthic community 

organization across scales, while accounting for concurrent gradients in surface wave power. 

Importantly, using Jarvis allowed us to examine the effects of gradients in nutrient 

availability on benthic community seascapes in the absence of confounding direct human 

impacts that can act to obscure and distort natural biophysical relationships on coral reefs 

(Williams et al. 2015a).  

 

Methods 

Study Site 

Jarvis Island (0°22′S 160°01′W) is an uninhabited, U.S-affiliated coral reef island in 

the Line Islands Archipelago, Pacific Ocean (Fig.1a). The reefs surrounding Jarvis are 

protected under U.S. federal law as part of the Pacific Remote Islands Marine National 

Monument. Situated 2,420 km south of the Hawaiian Archipelago, Jarvis was acknowledged 

as one of the ‘healthiest’ coral reefs in the world by the Ocean Health Index (Halpern et al. 

2012). As such, it supports a relatively high biomass of herbivorous and piscivorous fish 

(>100 g m-2) relative to populated islands within the region (Williams et al. 2015b). However, 

Jarvis also suffered extensive coral mortality following a mass coral bleaching event 

associated with the 2015/16 El Niño (Brainard et al. 2018), making the dissemination of 



patterns and drivers of benthic condition before this event particularly timely and important 

to prevent shifting baselines (Knowlton and Jackson 2008).  

As with other equatorial Pacific islands, Jarvis experiences a relatively low seasonal 

sea-surface temperature range of ~1°C (Gove et al. 2013). Mean sea-surface temperature near 

Jarvis is ~27°C (Gove et al. 2013) and is typically unchanged until ~100 m depth, at which 

point the temperature rapidly drops off to between 12 – 13°C by ~200 m depth (Fig.1c). 

Surface NO3 concentrations in the island’s vicinity are nearly an order of magnitude higher 

(~5 µ mol l-1) than the “typical” upper limit for most coral reefs (Atkinson and Falter 2003) 

and rapidly increase below the ~100 m thermocline, equaling 20 µ mol l-1 by ~200 m depth 

(Fig.1c). Nearshore seawater temperatures at Jarvis exhibit a pronounced cross-island, west-

east gradient due to island blocking of the cold, nutrient rich, eastward flowing subsurface 

Equatorial Undercurrent (EUC) (Gove et al. 2006). This cross-island gradient varies year-to-

year owing to the El Niño Southern Oscillation (ENSO), but in general causes the western 

side of the island to be 0 – 5 °C colder than the east (Karnauskas et al. 2016). To test our 

hypothesis that this intra-island temperature gradient driven by localized upwelling results in 

a concurrent nutrient gradient (specifically deep-water derived nitrogen), we collected water 

samples using a hand deployed 5 L Niskin bottle string at depths of 10 and 20 m (to match 

the depths of our benthic surveys – see below) at numerous sites around the island’s 

perimeter in 2006 (Fig. 1a). Water samples (100 ml) were immediately pulled from each 

Niskin and frozen at -20 °C. The concentration of total nitrogen (NO2 + NO3) in each sample 

was later quantified at NOAA’s Pacific Marine Environmental Laboratories. 

 

Benthic community surveys and spatial processing 

Benthic community data were collected via towed-diver surveys (Kenyon et al. 2006) 

in March to April of 2006, 2008, and 2010. Divers were towed with instrumented boards at 

~3 km h-1 suspended ~1 m above the benthos at a target depth of 15 m. The tow boards were 



equipped with a high-resolution digital SLR camera (Canon EOS 10-D/50-D) and strobes to 

illuminate the benthos. Position information was recorded using an onboard Global 

Positioning System (GPS); a layback model accurately georeferenced each photograph. In 

each survey year, the divers circumnavigated 100% of Jarvis’s perimeter, taking images 

approximately every 15 m along the 12.4 km linear distance of fore reef (the reef slope 

habitat that is exposed to the open ocean). Benthic images were subsequently filtered to only 

include those images within the 8 – 20 m depth zone to allow comparability with previous 

studies in the region (Gove et al. 2015, Williams et al. 2015). This resulted in a total of 2,397 

images, with 1,867 of those images occurring within 5 m of the 15 m target depth. The 

percent cover of five functional groups, namely hard coral (split in to four morphological 

subcategories: plating, branching, free living, and digitate), crustose coralline algae (CCA), 

macroalgae, turf algae, and soft coral was extracted using Coral Point Count software with 

Excel extensions (Kohler and Gill 2006). Due to the extremely low percentage cover of some 

benthic functional groups (all <5% at an island-mean scale within each of the three survey 

years), only plating hard coral, CCA, macroalgae, and turf algae were investigated further in 

this study.  

We divided Jarvis’ fore reef habitat into 111 discrete grid cells (each ~112 m wide) 

around the circumference of the island in ArcGIS (v10.5, custom Python script: 

https://doi.org/10.5281/zenodo.1199350) and spatially assigned each benthic image to one of 

these discrete cells. We arrived at this number of cells through a selective process aiming to 

balance the width and number of cells with the proportion of cells that subsequently 

contained benthic images, setting a threshold of > 50% of the cells needing to contain images 

across the three survey years at the smallest cell width. Data from all three years were used to 

calculate an overall mean cover for each functional group within each grid cell. To be 

included in subsequent statistical analyses, cells had to contain ≥ four benthic images in each 



of the three survey years, resulting in 71 grid cells with data from a total of 1,781 benthic 

images. 

 

Subsurface temperature (proxy for localized upwelling) 

In addition to the camera and strobes, the tow boards were equipped with a SeaBird™ 

Electronics (SBE) 39 subsurface pressure, temperature-depth recorder (STR), set at a 10 s 

sample rate (0.002°C accuracy). This approach gave a spatially expansive, high-resolution, 

but snapshot view of in situ reef-level temperature gradients around Jarvis during each of the 

three survey years.  

To quantify longer-term intra-island gradients in reef-level temperature, we used five 

SBE 39 STRs that recorded every 15-30 min (then averaged at hourly intervals to allow 

comparison) between 2004 and 2010. The STRs were mounted to the reef substrate at 10-15 

m depth and captured all four major cardinal directions around the circumference of Jarvis 

(Fig.2a). Using these data, we calculated the time period (in hours) that the reef experienced 

significant cooling as a result of deep, cooler water being driven up the reef slope. In 

summary, the hourly temperature data were interpolated to 5-min intervals using linear 

interpolation to facilitate a more accurate estimation of the termination time of a cold-water 

pulse event. A rapid decrease in the recorded temperature was interpreted as a cold-water 

event if it fulfilled two conditions: (1) the rate of change of the temperature has to be larger 

than -0.3°C per 5 min, and (2) the overall temperature decrease within the pulse had to be 

more than 0.3°C (compared to the temperature before the pulse began) (Sevadjian et al. 2012, 

Williams et al. 2018). A cold-water pulse was assumed to have ended when the temperature 

had increased to half that of the total temperature drop. Because our focus here was on 

tidally-driven (M2) pulses, a pulse was discarded if it lasted for longer than 13 hours. The 

magnitude of cold pulses was calculated by finding the minimum value in the cumulative 



sum of the cold pulse and calculated as a percentage of the long-term climatological 

temperature range of Jarvis from Gove et al. (2013).  

 

Surface wave power 

Integrated surface wave power (kWhr m-1) was calculated for all grid cells using a 3-h 

output from NOAA’s Wave Watch III global, full-spectral wave model (WWIII; 

http://polar.ncep.noaa.gov/waves/wavewatch). To link the 50-km resolution WWIII model 

output to island grid cells, we used an incident wave swath method. First, we calculated wave 

power from significant wave height (Hs), peak period (Tp) and peak direction (Dp) (Tolman 

2014). Wave power (W m-1) is the energy flux per unit of wave crest, defined as: 

                (1) 

 

where ρ is the density of seawater (1024 kg m-3) and g is the acceleration of gravity (9.8 m s-

2). Wave power combines wave height and period and thus provides a more representative 

metric of the most powerful wave events than either Hs or Tp alone. For 25 equally spaced 

locations (every 497 m) around the circumference of Jarvis, we created a 360° radial plot of 

line length 100 km. Where these lines intersected land on Jarvis itself that degree bin was 

removed, leaving only the angles open to exposure in the incident wave swath. For each of 

these exposed degree bins, wave power and its corresponding direction were selected at each 

time-step for the closest WWIII pixel. We summed yearly values for the period 2000 – 2010 

to give a single number representing the mean annual cumulative wave power, or the annual 

wave energy flux (kWhr m-1) and calculated a yearly average for each of the 25 equally 

spaced locations. The next step was to create a 250 m buffer around each of our 25 locations 

and used a spatial join to assign their wave power values to individual grid cells. When grid 

cells contained values from more than one 250 m buffer, an average was taken. 

WP =
ρg2Tp Hs

2

64π



 

Quantifying benthic functional group spatial autocorrelation across scales  

To test the hypothesis of no spatial autocorrelation in the cover of each benthic group 

around the circumference of Jarvis, we used the Moran’s I statistic (Moran 1950). Using the 

R programming language (R Development Core Team, www.r-project.org), we coded a 

custom function based on the Moran.I function in the ape package (Paradis et al. 2004) to 

calculate the observed Moran’s I value (OMI) based on an inverse Euclidean distance matrix 

defined as:  

 𝐼 =
𝑛
𝑆%

∑ ∑ 𝜔(,*+
*,- (𝑥( − 𝑥̅)+

(,- 3𝑥* − 𝑥̅4
∑ (𝑥( − 𝑥̅)5+
(,-

 (2) 

 

where n is the number of observations, 𝜔(,* is a matrix of weights between observations, 𝑥( is 

the observed value at location i, 𝑥̅ is the mean value and 𝑆% is the sum of spatial weights 𝑆% =

∑ ∑ 𝜔(,*+
*,-

+
(,- . In this function the spatial weights are defined as the inverse of the minimum 

distance,	𝑑(,*, around an island (i.e. along the fore reef habitat circumference) between 

locations i and j, as follows: 

 𝑑(,* = min3(𝑗 − 𝑖), (𝑛 + 𝑖 − 𝑗)4 (3) 

 

 𝜔(,* =
1
𝑑(,*

	for	𝑖 ≠ 𝑗	, 0	otherwise (4) 

 

A significant departure from random (p < 0.05) indicated spatial patterns in abundance to be 

highly organized in space (i.e., among grid cells). Specifically, positive OMI values indicated 

spatial clustering, with the more positive the OMI value the more positively autocorrelated 

the data.  

We explored patterns of spatial autocorrelation over a range of scales, by rescaling the 

data within a moving window at increasing 100-m increments to a maximum of 2 km. Grid 

cells containing ‘no data’ (i.e., those that did not meet our criteria of ≥4 benthic images in 



each of the three survey years) were not included in the averaging process. Beyond our 

smallest spatial resolution of 100 m, there were multiple starting points for the moving 

window averaging process. To account for this, we computed all possible starting points 

around the island for each re-scaling exercise (i.e., phase), calculating the OMI and p-value 

for each. Our outputs report the mean OMI and the minimum and maximum OMI values for 

each scale as a function of the phase and the scale at which the upper bound of p exceeds 

0.05. 

 

Predictive modeling of benthic seascapes 

To link spatial changes in benthic cover between island grid cells to concurrent 

changes in our two focus physical drivers (subsurface temperature and surface wave power), 

we used boosted regression tree (BRT) modeling. Unlike many modeling techniques that aim 

to fit a single parsimonious model, BRT modeling incorporates machine learning decision 

tree methods (Breiman 2001) and boosting, a method to reduce predictive error (Elith et al. 

2008), to build an additive regression model in which individual terms are simple trees, fitted 

in a forward stage-wise manner. Tree-based ensemble techniques, such as boosted regression 

trees have frequently been used to model species-seascape relationships at a range of spatial 

scales (Knudby et al. 2010, Leathwick et al. 2006, Pittman et al. 2009).  

The in situ STR loggers, while useful for quantifying long-term intra-island gradients 

in cooling hours, did not provide sufficient spatial coverage to be included in a BRT 

modeling framework. Instead, to represent intra-island subsurface temperature gradients we 

used the data collected by the towed-diver STR during their complete circumnavigation of 

the island. Data from all three survey years within the depth range 8 – 20 m were used to 

calculate an average subsurface temperature for each island grid cell. Our two predictors, 



surface wave power and subsurface temperature, had a Pearson’s correlation coefficient of 

0.53. Both were therefore included in the model fitting process.  

BRT models and graphical outputs were constructed using the R packages gbm 

(Ridgeway 2017), the gbm.step function in the dismo package (Hijmans et al. 2017), and a 

series of custom coded functions to link the BRT outputs to the package ggplot2. Benthic 

percent cover values were arcsine transformed to achieve normality and modeled using a 

Gaussian distribution. We used 10-fold cross validation for model development and 

validation, and this approach allowed us to sub-sample the data multiple times during model 

development, helping to reduce spatial autocorrelation in the response variable (sensu Gove 

et al. 2015). We then calculated the overall cross-validation percent deviance explained by 

each model as a metric of model performance. To optimize predictive performance, we 

varied three parameters: the bag-fraction (bf, proportion of data to be selected at each step), 

learning rate (lr, used to shrink the contribution of each tree as it is added to the model), and 

tree complexity (tc, the number of nodes in a tree). Using a customized loop routine 

(Richards et al. 2012), we identified the combination of these three parameters that resulted 

in the lowest cross validation deviance (CVD) over bf values 0.5, 0.7, and 0.8, lr values 

0.001, 0.0001, and 0.00001, and tc values 1 – 5, while maintaining a minimum of ≥1000 

fitted trees (with the final optimal number of trees determined by gbm.step). The relative 

importance of sub-surface temperature and surface wave power in predicting spatial 

variations in benthic cover was quantified by the number of times each was selected for 

splitting, weighted by the squared improvement to the model as a result of each split, and 

averaged over all trees (Friedman and Meulman 2003). We visualized the conditional 

relationship the two predictors had on each response variable using partial dependency plots 

and calculated 95% confidence intervals from 10,000 bootstrapped replicates to visualize the 

uncertainty in our fitted functions (Buston and Elith 2011). 



 

Results 

Benthic community seascapes 

 Across all three survey years (2006, 2008, 2010), the island-mean (± 1SE) cover of 

hard coral equaled 25.0% (±2.3) and was overwhelmingly dominated by plating coral (22.4% 

± 2.2). The island-mean cover of crustose coralline algae (CCA) equaled 21.7% (±1.2), 

macroalgae equaled 17.1% (±1.6), and turf algae equaled 23.1% (±1.0). At intra-island 

scales, the four benthic functional groups exhibited clear spatial segregation regarding their 

spatial dominance. The dominance of plating coral occurred as a single zone along the entire 

west coastline, extending from approximately the central south coast to ~5.5 km to the 

northwest (Fig. 2a) and reaching upward of 60 – 80% cover along the west to the northwest 

portion of the coastline (Fig. 3). In contrast, macroalgae displayed two spatial zones of 

dominance; one ~2 km along the north to northeast portion of coastline (Fig. 2a) and peaking 

at 40 – 60% cover (Fig. 3), the other extending across ~1 km of the southern coast (Fig. 2a) 

reaching between 20 – 40% cover (Fig. 3). CCA also displayed two spatial zones of 

dominance; one ~1 km zone extending along half of the northeast coast and reaching upward 

of 40% cover, and a larger ~1.7 km zone along the east to southeast coast, peaking at 20 – 

40% cover (Fig. 2a, Fig. 3). Finally, turf algae displayed more erratic spatial dominance, 

existing as a relatively short (< 1 km) portion of the east coast (Fig. 2a) and reaching upwards 

of 40% cover (Fig. 3), but also occurring in small pockets (100 – 200 m wide) interspersed 

among the plating coral and macroalgal zones along the south coast and within the north 

coast macroalgal zone (Fig. 2a).  

All four benthic functional groups showed significant signs of positive autocorrelation 

(spatial clustering) at the smallest scale resolution of the data (i.e., 100 m, Fig. 4). Above this 

scale, all four groups showed a decline in positive autocorrelation. The cover of plating coral 



was spatially clustered up until 1100 m, at which point patterns did not differ significantly 

from random (Fig. 4a). In contrast, the cover of macroalgae became spatially random at 

almost half this scale at 600 m (Fig. 4b). The cover of CCA and turf algae showed an almost 

identical drop in positive autocorrelation between scales of 100 – 900 m, at which point the 

spatial cover of both groups did not differ significantly from random (Fig. 4c-d). 

 

Intra-island gradients in subsurface temperature, nutrients, and surface wave power 

There was considerable intra-island variability in the number of tidally-driven 

subsurface cooling hours between 2004 and 2010 (Fig. 2 b-f). STR-b, located on the 

southwest tip of Jarvis in the center of the plating coral dominance zone, experienced the 

highest number of cooling hours overall (~6% of the time there was a pulse present at STR-

b), with the majority of events lasting between 1 – 2 hr (Fig. 2b).  Here, the subsurface 

temperature dropped by up to 4°C, suggestive of water originating from between 100 – 150 

m depth (Fig. 1c). STR-c, located further to the northwest within the plating coral dominance 

zone, also recorded a relatively high number of cooling hours compared to all other STRs 

(~3% of the time, Fig. 2c). However, STR-c was only operational for less than four out of the 

six years. Given the close correlation between STR-b and STR-c for those periods of time 

that there was temporal overlap (between 2004 and 2007, Fig. 2b-c), the number of cooling 

hours at STR-c likely represents an underestimate for this region of the coastline. The total 

number of cooling hours recorded by the remaining three STRs located on the north, east, and 

south cardinal points of the coastline were negligible, and those events that did occur were of 

a low magnitude (generally <1°C, Fig. 2 d-f). This intra-island gradient in subsurface cooling 

hours was reflected in a mean drop in subsurface temperature of ~1°C recorded by the towed-

diver STR along the west to the northwest coast relative to the rest of the island (Fig. 2g). As 

we predicted, total nitrogen (NO2 + NO3) was subsequently higher along the western coast 



relative to the north, east, or southern coast (Fig. 1b). Mean annual cumulative wave power 

was lowest along the west to the northwest region (~60,000 kWhr m-1), then steadily 

increased in a clockwise direction, peaking in the northeast to east at ~140,000 kWhr m-1, 

before dropping steadily again along the south coast towards the west (Fig. 2g). 

 

Predicting benthic community seascapes 

 Surface wave power and subsurface temperature were strong predictors of spatial 

variations in the percent cover of benthic functional groups around the circumference of 

Jarvis, explaining 84% of the total cross-validation percent deviance in plating coral, 72% in 

macroalgae, 63% in crustose coralline algae (CCA), and 48% in turf algae (Table 1). Of the 

two predictors, subsurface temperature was by far the stronger predictor of spatial variations 

in benthic cover, with a relative influence score >78% for all benthic groups (Table 1) and 

resulting in more pronounced functional relationships in the partial dependency plots (Fig. 5). 

Plating coral cover was negatively related to subsurface temperature and surface wave power 

(Fig. 5a-b), peaking where temperature equaled ~25.8 – 26.1°C and where there was lower 

wave power, before rapidly dropping in cover above 26.4°C (Fig. 5a). At the point along the 

temperature gradient that plating coral cover began to drop, competitive macroalgae cover 

started to rapidly increase, peaking at ~26.6°C and at intermediate wave power (Fig. 5c-d). 

CCA cover was positively related to both subsurface temperature and surface wave power 

(Fig. 5e-f), with cover rapidly increasing above ~26.2°C. Turf algae cover was also positively 

related to subsurface temperature, showing a similar pattern to that of the macroalgae, and 

increasing in cover rapidly above 26.1°C (Fig. 5g). Turf algae cover also showed a slight 

decrease at the point along the surface wave power gradient that CCA began to increase (Fig. 

5h); however, the relationship was unpronounced and contributed relatively little to overall 

model performance (Table 1). 



 

Discussion 

Seascapes occur at many physical scales and are defined by the species and ecological 

processes relevant to the research question(s) (Wedding et al. 2011). As a result, the concept 

of scaling in landscape ecology does not focus on the human perception of the correct scale, 

instead it is defined by the organisms’ use of the environment in space and time (Wiens and 

Milne 1989). We show that coral reef benthic functional groups demonstrate predictable 

scaled patterns of organization across the seascape of a remote tropical island, with positive 

autocorrelation present within each group at scales < ~1 km. Although there is no single scale 

that can be defined as characteristic for seascape ecology (Pittman and McAlpine 2003), we 

have identified the importance of scale-dependent spatial patterns in competing coral reef 

benthic functional groups. Moreover, the strong spatial clustering of benthic groups across 

the seascape forms a somewhat simplistic pattern of intra-island spatial dominance that is 

predicted by concurrent gradients in physical drivers.  

 

Benthic community spatial patterns and their drivers across a coral reef seascape 

Spatial pattern metrics provide a consistent method with which to compare seascape 

pattern, structure, and to evaluate changes across the seascape at a range of spatial scales 

(Botequilha Leitão et al. 2006). Previous works on coral reefs have used seascape models to 

show that wave power and depth can provide refuges from fishing pressure and that these 

spatial pattern metrics are able to predict fish assemblage structure in other reef locations 

(Stamoulis et al. 2018). Here, we advanced the application of spatial pattern metrics across 

coral reef seascapes to include subsurface temperature and surface wave power and coupled 

those with spatially-expansive digital benthic image surveys. Importantly, we did this in an 

area free from direct local human impacts that can decouple natural biophysical relationships 



on coral reefs (Williams et al. 2015a), thus offering insight in to the natural spatial structuring 

forces of coral reef benthic community seascapes.  

Around the 12.4 km of Jarvis Island’s circumference, we found distinct spatial 

transition points between expanses of coastline dominated by a single benthic group (Fig. 2a). 

Such spatially-abrupt transition points between distinct ecological communities are evident in 

numerous terrestrial and aquatic ecosystems, such as tropical rainforests, lakes, and estuaries 

(Attrill and Rundle 2002). Often the transition in question is between vastly different 

systems, for example the progression of lower montane rainforest to tropical rainforest along 

an altitudinal gradient in temperature and moisture (Whittaker 1970), or a shift from 

subtropical mangrove to a seagrass habitat (Hammerschlag et al. 2010). We observed a 

similar spatial scaling around a tropical island but evidenced by more subtle transitions in 

functional group dominance. We propose that the abrupt spatial transition points between 

competing benthic functional groups around the coastline occur as a result of biological 

limitations and emerging competitive dominance to intra-island gradients in physical drivers.  

Each of our four benthic functional groups showed evidence of spatial clustering 

(positive autocorrelation) at the 0.1 km scale resolution of our data. At increasing spatial 

scales, the level of positive autocorrelation decreased, but groups showed evidence of 

significant spatial clustering up until a scale of 0.6 km (for macroalgae), 0.9 km (for CCA 

and turf algae), and 1.1 km (for hard plating coral). Above these scales the cover of each 

functional group appeared spatially random (Fig. 4). Interestingly, the patterns of spatial 

autocorrelation around Jarvis appear comparable to Palmyra Atoll situated ~720 km NNW of 

Jarvis, where similar benthic functional groups showed evidence of positive autocorrelation 

across the seascape and also appeared spatially random at scales > 500 m (Gove et al. 2015). 

This common scaling between Jarvis and Palmyra, despite their geographical separation, 

suggests coral reef benthic seascapes may have important elements of spatial predictability. 



Previous work at Palmyra has documented biologically driven non-random spatial patterns of 

corals within 10 × 10 m quadrats, owing to differences in the reproductive strategies of 

common reef-building corals (Edwards et al. 2017). While these biological drivers of spatial 

patterning are likely to also operate at smaller spatial scales at Jarvis, at the scales of 

community organization we describe (100s m), the patterns suggest an exogenous 

environmental structuring force. Indeed, we found gradients in subsurface temperature (as a 

proxy for upwelling and thus nutrient availability), and to a lesser extent surface wave power, 

to explain between 48 – 84% of the cross-validation percent deviance in functional group 

cover around Jarvis’s coastline (Table 1).  

We documented up to 10 times more cooling-hours within any given year along the 

western coast of Jarvis compared to the northern, eastern, or southern coasts, with events 

typically resulting in a drop of 1 – 4°C over a period of < 5 hr (Fig. 2). These high frequency 

temperature fluctuations are indicative of upwelling induced by internal waves (Leichter et al. 

2012, Williams et al. 2018, Wolanski et al. 2004, Wolanski and Delesalle 1995) and at Jarvis 

result in a peak in total nitrogen (NO2 + NO3) along the western coast relative to the other 

parts of the coastline (Fig. 1b). Excess nutrient delivery to oligotrophic shallow water coral 

reefs can result in macroalgal dominance, whether the nutrients are human-derived 

(D’Angelo and Wiedenmann 2014, McCook 1999) or naturally supplied by localized 

upwelling (Diaz-Pulido and Garzón-Ferreira 2002, Roberts et al. 1992, Wolanski et al. 1988). 

However, at Jarvis we found a strong positive spatial association between localized upwelling 

(captured in our spatial model by gradients in subsurface temperature) and hard coral 

dominance, predominantly a plating Montipora species that provides key three-dimensional 

reef structure along a ~5.5 km section of the western coast. This positive spatial association 

was maximized in areas sheltered from high surface wave power. Powerful surface waves 

and their resulting bed-sheer stress can dislodge more three-dimensional coral growth forms 



(Madin et al. 2014) and instead tend to promote the dominance of low-lying coral 

morphologies, CCA, and turf algae (Bradbury and Young 1981, Gove et al. 2015, Williams et 

al. 2013). 

The positive association between hard coral dominance and lower subsurface 

temperatures and increased nutrients along Jarvis’s western coast may result from a number 

of factors. The functionally intact herbivorous reef fish communities at Jarvis (Williams et al. 

2015b) likely provide essential top-down control of competitive algae that would otherwise 

benefit from increased nutrients and compete with corals for space (Barott et al. 2012, Smith 

et al. 2010). Also, increased nutrient concentrations can promote coral competitive 

dominance via increased coral growth rates and net primary production (D’Angelo and 

Wiedenmann 2014). This positive effect of increased nutrients to coral growth and 

persistence occurs under both experimental (Dunn et al. 2012) and natural field settings 

(Leichter and Salvatore 2006), including a positive effect of human-derived nutrients in some 

instances (Bongiorni et al. 2003). Corals are mixotrophic organisms that can exploit 

heterotrophic subsidies made available by physical processes such as upwelling (Roder et al. 

2010, Williams et al. 2018). There are numerous physiological benefits of heterotrophic 

feeding to corals, including the increased storage of lipids that can promote their persistence 

during periods of stress and disturbance (Grottoli et al. 2006, Houlbreque and Ferrier-Pagès 

2009). Such physiological benefits may help to explain the dominance of hard coral over our 

survey period along Jarvis’s western coast where upwelling is most intense. Notably, 

however, these benefits did not result in resistance to a recent ocean warming event in 2016 

that resulted in the temporary loss of current-driven upwelling and the near complete 

mortality of hard coral along Jarvis’s entire western coastline (Brainard et al. 2018). Our data 

provide critical baseline information prior to this event, highlighting not only the patterns in 

benthic community structure across Jarvis’s seascape, but also their physical driving forces. 



Whether the reefs return to the same spatial configuration around the island and whether they 

are once again predicted by concurrent gradients in physical processes remains to be seen. 

 

Conclusion 

 Our study shows, for the first time, that competing coral reef benthic functional 

groups show a common scaling pattern of organization around a tropical island seascape. It 

also shows that, in the absence of confounding local human impacts, these patterns are highly 

predictable based on concurrent gradients in key physical drivers. These physical drivers 

actually originate far outside the system, generated by winds, prevailing ocean currents, and 

tides. It is not until they interact with island-scale features (bathymetry leading to upwelling) 

that they result in pronounced spatial organization of the benthic communities living there. 

This implies that at certain scales, the organization of coral reef benthic communities is 

bounded by the physical setting of the island and it is beyond our ability to manipulate and 

manage. Whether there exists some predictable common scaling law for coral reef benthic 

communities around tropical island seascapes remains to be seen and represents an exciting 

avenue for future research.  
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Figures  

 

 

Figure 1. (a) Location of Jarvis Island in the Pacific Ocean and its surrounding bathymetry (20 
m resolution, obtained from NOAA and the Joint Institute for Marine and Atmospheric 
Research, University of Hawaii). The location of water sampling stations for nutrient analyses 
are shown around the island. (b) Total nitrogen concentrations of the seawater along the 
western, northern, eastern and southern coasts of Jarvis Island at depths of 10 and 20 m. (c) 
Vertical profiles of observed ocean temperature (solid) and nitrate concentrations (dotted) 
computed as a horizontal average from a 1°×1° box centered on the island. Data obtained from 
the World Ocean Atlas (https://www.nodc.noaa.gov/OC5/woa13/).  
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Figure 2. (a) Benthic community spatial dominance around the circumference of the fore reef 
habitat (8 – 20 m depth) at Jarvis Island quantified from towed-diver digital image surveys in 
2006, 2008, and 2010. Spatial dominance is defined as the benthic group with the highest 
percent cover at that location. There are distinct ecotones around the island, defined as 
transition points between two regions of spatial dominance, particularly for hard plating coral, 
macroalgae, and crustose coralline algae (CCA). (b – f) High-resolution (0.002°C accuracy) 
reef-level temperature time series and the number of cooling events (by event duration) and 
their associated magnitude. Note the large number of cooling events on the west coast where 
hard corals dominate, compared to a low number of cooling events where either macroalgae or 
turf algae dominate. (g) Sub-surface temperature (solid line) captured by the diver-operated 
tow board during a circumnavigation of the island and the concurrent gradient in surface wave 
power (dashed line). 
 

 



 
Figure 3. Benthic community seascapes around the 12.4 km circumference of Jarvis Island. 
Data are as in Fig. 2a but expanded to show the fine-scale spatial shifts in the percent cover of 
benthic competitors. The solid line in each case represents the mean cover (across all three 
survey years), with the temporal range in percent cover at each location shown in grey. The 
white spaces indicate where spatial replication failed our prerequisite of grid cells needing to 
contain ≥4 benthic images in each of the three survey years. 
 
 
 
 
 
 



 
 
Figure 4. Patterns of spatial autocorrelation in the percent cover of plating coral (a), 
macroalgae (b), crustose coralline algae (c) and turf algae (d) at Jarvis Island. The observed 
Moran’s I (OMI) value (solid line) indicates deviations from a random distribution (0 value – 
horizontal dotted line) as either increasingly clustered (+ values) to increasingly dispersed (- 
values). The range in OMI value at any particular scale depending on the starting location for 
the spatial averaging (i.e., the phase – see methods section) is shown. The vertical dotted line 
indicates the scale at which the OMI fails to differ significantly from random (p≥0.05). 
 
 
 
 



 
 
Figure 5. Partial dependency response plots from boosted regression tree (BRT) analyses 
relating spatial variations in subsurface temperature (Temp, °C) and integrated surface wave 
power (Wave power, kWhr m-1) to concurrent changes in the percent cover (y-axis) of plating 
hard coral (a, b), turf algae (c, d), crustose coralline algae (e, f), and macroalgae (g, h). Solid 
colored lines represent the BRT fitted function with 95% confidence interval shown in grey 
(i.e., model uncertainty). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Boosted regression tree (BRT) model results, including optimal parameter settings, 
predictive performance, and relative influence of the two physical drivers (sub-surface 
temperature, as a proxy for localized upwelling, and integrated surface wave power) on 
spatial variations in the relative cover of benthic functional groups around the circumference 
of Jarvis Island. CCA, crustose coralline algae. 
 
              
    Plating Coral Macroalgae CCA Turf Algae   
  Model parameters           
  Tree complexity 3 5 1 4   
  Learning rate 0.001 0.0001 0.001 0.0001   
  Bag fraction 0.8 0.8 0.7 0.8   
  Number of trees 5400 24100 3300 18100   
  Mean total deviance 436.8 242.9 136.2 81.1   
  CV deviance (CVD) 68.5 67.5 49.9 42.0   
  CVD Standard Error 17.1 10.1 10.2 4.6   
  CVD explained (%) 84.3 72.2 63.4 48.2   
              
  Relative influence of predictors (%)           
  Sub-surface temperature 81.8 79.5 78.4 89.8   
  Surface wave power 18.1 20.5 21.6 10.2   
              
              

 

 

 

 

 

 

 

 

 

 


